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Constructing longitudinal disease
progression curves using sparse,
short-term individual data with an
application to Alzheimer’s disease
C.A. Budgeon,a,b*† K. Murray,c B.A. Turlach,a S. Baker,d
V.L. Villemagne,e,f S.C. Burnhamb and for the Alzheimer’s
Disease Neuroimaging Initiative‡

In epidemiology, cohort studies utilised to monitor and assess disease status and progression often result in short-
term and sparse follow-up data. Thus, gaining an understanding of the full-term disease pathogenesis can be
difficult, requiring shorter-term data from many individuals to be collated. We investigate and evaluate methods
to construct and quantify the underlying long-term longitudinal trajectories for disease markers using short-term
follow-up data, specifically applied to Alzheimer’s disease. We generate individuals’ follow-up data to investigate
approaches to this problem adopting a four-step modelling approach that (i) determines individual slopes and
anchor points for their short-term trajectory, (ii) fits polynomials to these slopes and anchor points, (iii) integrates
the reciprocated polynomials and (iv) inverts the resulting curve providing an estimate of the underlying longi-
tudinal trajectory. To alleviate the potential problem of roots of polynomials falling into the region over which
we integrate, we propose the use of non-negative polynomials in Step 2. We demonstrate that our approach can
construct underlying sigmoidal trajectories from individuals’ sparse, short-term follow-up data. Furthermore,
to determine an optimal methodology, we consider variations to our modelling approach including contrasting
linear mixed effects regression to linear regression in Step 1 and investigating different orders of polynomials in
Step 2. Cubic order polynomials provided more accurate results, and there were negligible differences between
regression methodologies. We use bootstrap confidence intervals to quantify the variability in our estimates of the
underlying longitudinal trajectory and apply these methods to data from the Alzheimer’s Disease Neuroimaging
Initiative to demonstrate their practical use. Copyright © 2017 John Wiley & Sons, Ltd.
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1. Introduction

Alzheimer’s disease (AD), the leading cause of dementia, represents a worldwide epidemic and currently
costs 1.09% of global gross domestic product [1]. AD is a neurodegenerative disease resulting in loss of
cognitive function due to structural changes in the neocortex. These changes are mainly encompassed by
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the formation of extracellular A𝛽-amyloid (A𝛽) plaques and intracellular neurofibrillary tangles [2, 3].
Neurofibrillary tangles consist of intra-neuronal paired helical filaments of phosphorylated Tau protein.
They are not specific to AD and can be found in other neurodegenerative diseases such as frontotemporal
dementia. A𝛽 plaques are composed of extracellular aggregates of amyloid 𝛽-peptide, which is thought
to be toxic to neurons, and current therapeutic effort for AD is concentrated on reducing neocortical A𝛽

burden and/or toxicity.
Current thinking suggests that once clinical symptoms are present and diagnoses can be made, irre-

versible structural damage has already occurred [4]. Therefore, therapeutic strategies are predicted to
have most efficacy if delivered at the prodromal and even preclinical stages of disease [5]. To be able to
appropriately time such intervention and therapeutic strategies, an understanding about the disease patho-
genesis is crucial. Longitudinal monitoring of individuals with AD is becoming more common through a
number of cohort studies around the world. Two examples include the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) [6] and the Australian Imaging, Biomarker and Lifestyle Study (AIBL) [7] both
of which record data including neocortical A𝛽 burden as measured by positron emission tomography
(PET). However, these studies generally have sparse information with recordings taken every 1–2 years
and with less than 8 years of total follow-up on any individual in AIBL and generally less than 10 years
of follow-up in ADNI, although not all measures span this time. Consequently, the full disease course
that is suspected to evolve over an approximate 30-year period [8] is not fully captured by these studies.

Given therapeutic targets are aimed at modifying neocortical A𝛽 burden and it is desirable to implement
these at the prodromal or preclinical phase of disease, it is paramount to understand the longitudinal
deposition of A𝛽 plaques in the neocortex. In this paper, we specifically refer to AD, whose long-term
trajectory, with respect to certain biomarkers, for example, neocortical A𝛽 burden, has been shown to
be sigmoidal in nature, characterised by an initial phase of steady, slow increase, then a stage of rapid
growth, followed finally by a plateau. This is described in [9, 10] with the latter of these providing a
thorough discussion and justification of the use of the sigmoidal shape in AD progression.

To date, several studies have conducted longitudinal modelling in various areas of AD research (for
example, Huijbers et al. [11], Yau et al. [12], Bateman et al. [13] and Samtani et al. [14] and references
therein). Bateman et al. [13] considered participants who were at risk of carrying a mutation for autoso-
mal dominant AD and collected information on their parents in relation to estimated years from expected
symptom onset to determine the relative order and magnitude of pathophysiological changes. Capuano
et al. [15] provide a method for longitudinal modelling for sigmoidal trajectories to incorporate corre-
lated data to analyse retrospective cognition data for deceased individuals. However, in this instance, the
individuals had a known end-point, and longitudinal trajectories were estimated up until death, which
requires having sufficient data on all individuals. Sabuncu et al. [16] investigated the use of a cumula-
tive diffusion model to predict longitudinal atrophy also proposing the use of a sigmoidal shape without
directly modelling the progression time. Yang et al. [17] modelled disease progression time assuming
an exponential model for ADAS-Cog 13 scores, using late mild cognitively impaired (MCI) and AD
individuals. Jack et al. [18] hypothesised that biomarker trajectories have a sigmoidal shape but did not
directly test this because of limitations in the available data, which was sparse in the areas it was most
needed in order to detect areas of acceleration and deceleration. Instead, they aimed to characterise the
shape of AD progression as a function of the mini-mental state exam (MMSE), where using cognition
measures has been seen as a common solution to modelling AD progression without the knowledge of
specific disease progression times (for example, Caroli et al. [19]). Furthermore, they state that creating
reliable models that accurately describe the full trajectory of disease will require significant amounts of
longitudinal data spanning from healthy status through to the end stage of disease. Aisen et al. [20] also
indicate that to test the proposed trajectory of disease progression, it is essential to acquire long-term
longitudinal follow-up. ADNI are currently in the process of collecting such data.

Most of these works either do not consider the problem created by having short-term data on the study
time scale in order to provide long-term predictions on a disease progression scale or deal with the sig-
moidal shape covering the full time span of disease progression. To our knowledge, only Villemagne et al.
[8] have made efforts to address both of these issues making initial progress in attempting to explore lon-
gitudinal trajectories using short-term data. However, in attempting to apply this methodology, it became
apparent that data-specific decisions needed to be made in order to use their approach and that expansion
and robustification of the various steps of this method was necessary in order to make it readily replicable
and effective. As such, we aim to develop (and evaluate) methodologies that will take sparse short-term
follow-up data from a number of individuals and construct the underlying full-term trajectory.
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The rest of this paper is organised as follows. Section 2 introduces the motivation behind this research.
In Section 3, we describe the methods developed and a detailed description of our four-step approach,
including a description of bootstrapping techniques used. In Section 4, we outline the numerical experi-
ment and describe the results and model comparisons in Section 5. We illustrate our four-step approach
using the publicly available ADNI data in Section 6 and conclude in Section 7 with a short discus-
sion. Throughout, we specifically demonstrate our methods in order to quantify the disease pathogenesis
associated with the longitudinal neocortical A𝛽 burden.

2. Motivation and background

Typically, in AD and many other diseases, data on individuals are available over short periods of time only.
Currently, in ADNI, or other databases that focus on AD, any individual can have either a single baseline
measurement or as few as two longitudinal data points. Having such short-term individual follow-up
data poses obvious challenges in approximating long-term trajectories for disease progression. Whilst the
methodology that we are proposing in this paper is suitable for the construction of sigmoidal, longitudinal
disease progression curves, our specific focus will be on AD, whose long-term trajectory for certain
biomarkers has been shown to have such a shape. Assuming each individual’s disease progression has
an underlying sigmoidal shape, we aim to estimate the population trajectory through a novel four-step
modelling approach that is outlined in the succeeding discussion and graphically illustrated in Figure 1.
Our methodology uses short-term, longitudinal data on individuals measured in follow-up time (t) since
entering the study (a subset of such data is shown in the left panel of Figure 1) to estimate the longitudinal
disease progression curve in terms of disease progression time (𝜏) (right panel of Figure 1).

Initially, we consider responses yij, which are measures for a surrogate marker of AD on the i-th indi-
vidual, at the j-th follow-up time point tij. From these, we calculate estimates of the mean �̂� and slope
�̂�′ for each individual’s disease progression by fitting a linear regression model to each individual’s data
(subset shown in Figure 1, Step 1). This fitted model is evaluated at the midpoint t̄i∙ =

1
ni

∑ni

j=1 tij of an
individual’s follow-up time points to give estimates:

(�̂�(t̄i∙), �̂�′(t̄i∙)) (1)

The second step involves fitting a (non-negative) polynomial to the estimated means and slopes from
(1) (Figure 1, Step 2). If we denote the fitted values from this polynomial as �̂�′(t), of which we take the
reciprocal, and continue to denote the scale of the input variable for the polynomial as �̂�(t), we obtain

(
�̂�(t), 1

�̂�′(t)

)
(2)

Figure 1. Step 1 – individual simulated longitudinal data for a surrogate marker of Alzheimer’s disease (AD)
against study time for a subset of individuals. Step 2 – estimated means against their respective slopes based on
the fitted regression lines, with a polynomial fit. Step 3 – integrating the reciprocal of the fitted polynomial. Step

4 – inverting the function to provide a surrogate marker of AD against disease progression time.
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In the third step, we integrate either analytically or numerically the function from (2) (Figure 1, Step 3),
that is, we integrate 1

�̂�′(t)
with respect to �̂�(t) and the result can be written as

(�̂�(𝜏), 𝜏) (3)

where 𝜏 is now disease progression time rather than follow-up time t. We note that the origin of the
disease progression time is such that for 𝜏 = 0, �̂�(𝜏) equals the smallest observed mean among the �̂�(t̄i∙),
making it data dependent. However, this is not problematic, because a typical question of interest is
how long it takes to progress from one specific disease progression state to another, rendering the origin
inconsequential. The final step involves an inversion of (3) to provide a long-term trajectory of disease
progression (Figure 1, Step 4):

(𝜏, �̂�(𝜏)) (4)

These final two steps allow us to progress from the curve fitted to the means and slopes, that is, the short-
term individual changes in a surrogate marker of AD, to a final estimated curve that can be interpreted
as a long-term trajectory for disease progression enabling us to infer about the long-term trajectory of an
individual.

It may seem natural in (2) to determine the functional form of 1
𝜇′(t)

from the assumed sigmoidal shape
of the disease progression curve and use nonlinear least squares to fit the resulting function to the data
calculated in (1). However, if each individual has its own sigmoidal curve arising from a nonlinear mixed
model based on a specific sigmoidal function, as, for example, in our simulation study in which we use the
five-parameter logistic (5PL) function, the population curve (i.e. the mean of all the individual’s curves)
is itself not necessarily of the same algebraic form as the individual’s curves, and it is highly unlikely this
population curve will have a closed form expression. Thus, basing the form of the relationship between
the means and slopes in this step on such backtracking from an assumed specific sigmoidal population
curve may be unreasonable. In light of this, and the fact that the means and slopes generated from (1)
typically produce an inverted u-shaped point cloud, a natural and relatively flexible candidate set of
models to consider here is the set of low-order polynomials.

As mentioned previously, it is generally of interest to predict the length of time it takes for an individual
to progress from one point on the curve to another. Specifically, we wish to know how many years an
individual will take to move from the healthy control (HC) state to the beginning stages of AD, and
what the error is associated with this prediction. Quantifying this time and understanding the relationship
between surrogate markers of AD and disease progression will enable us to incorporate the design and
timing of therapeutic information. It will also assist in the planning for events such as residential care
and predicting decline. Subsequently, this progression time could assist in personalising the care of an
individual.

3. Methods

In order to fit regression models to short-term data from all of the individuals, we consider two
approaches. We can fit a simple linear regression model (LM) for each subject i, each with ni time points
tij, of the following form:

yij = 𝛽0i + 𝛽1itij + 𝜖ij (5)

where 𝛽0i and 𝛽1i are the intercept and slope, respectively, of the regression line fitted to individual i and
𝜖ij ∼ N(0, 𝜎2). Alternatively, we can fit a linear mixed model (LMM) of the following form:

yij = (𝛽0 + b0i) + (𝛽1 + b1i)tij + 𝜖ij (6)

where 𝛽0 and 𝛽1 are the intercept and slope, respectively, of the (population) regression line, b0i and b1i
are the deviations from the population parameters for individual i modelled as being bivariate normal
with mean 0 and general variance–covariance matrix and 𝜖ij ∼ N(0, 𝜎2). We use either (5) or (6) to
extract estimated slopes, �̂�′

i s, and fitted values, �̂�is, evaluated at t̄i∙, and these estimates are then modelled
against each other as described in Section 2.

Whilst LMMs are preferred over LMs (see among others Verbeke and Molenberghs [21] or Fitzmaurice
et al. [22]) if the models in (5) or (6) are of primary interest, it is not clear whether these advantages carry
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through in our application. Hence, we not only investigate further the LM approach in the first step, as
implemented in Villemagne et al. [8], but also extend the methodology to explore the use of LMMs.

Previous research has suggested that the relationship between the means and slopes is concave in nature
[8]; thus, for simplicity, a low-order polynomial of the following form should provide a reasonable model
for this relationship:

p(x) = p(x; 𝜸) = 𝛾0 + 𝛾1x + 𝛾2x2 + · · · + 𝛾qxq (7)

where q is the degree of the polynomial and 𝜸 = (𝛾0, 𝛾1,… , 𝛾q)T . We restrict the order to cubics (q = 3)
and quintics (q = 5) as they provide, in our experience, reasonable fits and are relatively simple to use
in practice, whereas the use of higher degree polynomials becomes more complex in subsequent steps of
our approach and are likely to result in non-concave fits.

However, when fitting polynomials to the estimated means and slopes in (1), the roots of the fitted
polynomial may fall inside the range of the data, creating obvious problems in the subsequent integration
step after reciprocating the fitted polynomial. In this situation, we need to impose constraints to ensure
that the roots of the fitted polynomial do not fall within the range of the estimated means. Specifically,
we ensure that the fitted polynomial is positive over this range by enforcing non-negativity over a slightly
larger range. In order to enforce non-negativity, we adopt a sum of squared polynomials parametisation
(see, for example, Brickman [23] for details and, more recently, Murray et al. [24]). Typically, in the
problems we consider, we are using cubics and quintics (i.e. q = 2K + 1 for some integer K), which are
now constrained to be non-negative over an interval [a, b]; hence, (7) becomes

p(x) = (x − a)p1(x)2 + (b − x)p2(x)2, ∀x ∈ R (8)

where p1(x) and p2(x) are polynomials being at most of degree K.

3.1. Bootstrap variance estimation

In order to quantify the uncertainty in the disease progression time at a certain level of a biomarker or
surrogate marker, we can estimate confidence intervals (CI) for 𝜏 given a value of 𝜇(𝜏). An analytical
solution is not straightforward, so we use a bootstrap methodology to estimate point-wise CIs. There are
numerous bootstrap approaches that could be utilised, for example, the parametric bootstrap, the residual
bootstrap and the cases bootstrap all of which are detailed in De Leeuw et al. [25]. Field and Welsh [26]
and Field et al. [27] also suggest three main approaches for bootstrapping LMMs including the random-
effects bootstrap, the modified bootstrap and the generalised cluster bootstrap. Sherman and le Cessie
[28] call the cases bootstrap the ‘all-block’ bootstrap and advocate its use. Chambers and Chandra [29]
indicate that it is hard to justify the use of the parametric bootstrap when the model is an approxima-
tion, in particular if the distributional assumptions on the random effects are more for convenience and
not presumed to be part of the data-generating process. The same idea is expressed by Thai et al. [30]
who state that a non-parametric bootstrap approach is more suitable than the standard parametric boot-
strap if the distributional assumptions of the random effects are not tenable. In light of this discussion
and our extensive numerical experiences, we advocate and describe the use of the cases bootstrap for our
methodology. This consists of resampling with replacement the entire subjects (case), that is, all longitu-
dinal measurements for a resampled individual are included. Specifically, our approach can be described
as follows:

(1) Let (𝐭i, 𝐲i) be the predictor and response vectors for individual i, that is, the vectors for n individuals
is (𝐭1, 𝐲1), (𝐭2, 𝐲2),… , (𝐭n, 𝐲n).

(2) For b = 1,… ,B bootstrap iterations, do the following:

(a) Resample r times, where r = n, with replacement from {1,… , n}. If i is the jth resampled
value, set (𝐭∗j , 𝐲

∗
j ) to be (𝐭i, 𝐲i).

(b) With each bootstrap sample, follow the procedure described in Section 2, where we initially
calculate estimated slopes and means for each case using either LMs or LMMs, fit a non-
negative polynomial and integrate the reciprocal of this polynomial. By doing so, we obtain
at any given value 𝜇(𝜏) bootstrap replicates 𝜏∗,b of 𝜏 possibly by interpolation.

(3) To obtain CIs for 𝜏, for a given value of 𝜇(𝜏), we use the percentile method on our bootstrap
replicates 𝜏∗,b [31]. For each bootstrap iteration, the time taken to progress from one point in the
progression curve to another is calculated, and percentiles are taken of these times to obtain our CIs.

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017
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4. Numerical experiments

Based on the methodology described in Section 3, we conducted an extensive simulation study for mod-
elling short-term follow-up data in order to construct a long-term disease progression curve for AD. For
this investigation, we generated data from a 5PL function equivalent to that described in Gottschalk and
Dunn [32]:

R(𝜏) = c +
f − c

[1 + e−a(𝜏−b∗)]g
(9)

where 𝜏 is disease progression time, a > 0 is a slope parameter, c is the lower asymptote, f is the upper
asymptote, g is an asymmetry parameter, b∗ is b + log (21∕g − 1)∕a and b is the mid-point. This function
reflects the sigmoidal nature proposed by previous researchers for disease progression [9, 10].

In our simulations, all parameters in (9) are sampled using the distributions described as follows:

b ∼ U(10, 16)
a ∼ N+

−(0.40, 0,∞, 0.022)
c ∼ N+

−(0.01, 0,∞, 0.0052)
f ∼ N+

−(0.98,−∞, 1, 0.0052)
g ∼ N(20, 1)

where N+
−(𝜇, 𝜇

−, 𝜇+, 𝜎2) denotes the two-sided truncated normal distribution, that is, the normal distri-
bution, N(𝜇, 𝜎2), truncated to the interval [𝜇−, 𝜇+]. The values for each distribution are chosen such that
they provide a reasonable sigmoidal curve reflecting a real-life scenario. An example of a 5PL curve is
shown in Figure 2 and shows disease progression spanning approximately 30 years for some surrogate
marker of AD.

For each simulation, progression response data are generated, over a grid spanning 30 years, for all
individuals from individual specific 5PL functions, whose parameters are generated in each simulation
according to the distributions of the parameters described previously. To reflect a real-life scenario, uni-
formly distributed noise, whose range depends on the part of the progression curve from which the data
originates, is added to each response value. In AD (and other diseases that also follow a sigmoidal tra-
jectory), there is generally more variation in measurements around the years of most rapid change in
progression compared with the beginning and final stages of disease. In Figure 2, this rapid change in

Figure 2. An example of a five-parameter logistic curve modelled over 30 years for a surrogate marker of
Alzheimer’s disease (AD). The following parameter values are utilised for this figure b = 13, a = 0.4, c = 0.01,

f = 0.98 and g = 20.

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017
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progression is seen between 10 and 20 years, and the distribution of the uniformly distributed noise
reflects this. This provides us with n individual sets of data, each spanning 30 years.

As we are interested in the construction of the population trajectory curve from short-term follow-up
data, we use for each individual’s set of data only the data over t years, where t takes various values in our
simulation settings but is typically less than 5 years. The selection of the start point for the subset of data
used for each individual is randomly generated from a mixture of two normal distributions, reflecting the
nature of real-world data where there are generally fewer individuals studied around the area of rapid
change of progression. Once this starting time is randomly generated for each individual, we extract from
that individual’s data m consecutive observations from the starting point such that these are l time units
apart and within t years. For all subsequent steps of the proposed methodology and our simulations, our
knowledge is restricted to the study time point for an individual, and we assume that every individual’s
first observation is their first study time point. This reflects the real world scenario where it is unknown
what stage of the disease the individual is at, or what part of the curve their data came from.

The first panel of Figure 1 displays a subset of individual data for one simulation, with a regression
line fitted for each individual. These regression lines are then used to obtain estimates of the means and
slopes for a surrogate marker of AD for each individual using methods such as LMs or LMMs. The sec-
ond panel displays these estimated slopes against the estimated means, overlaid by a fitted (non-negative)
polynomial. Finally, the integral of the reciprocated fitted non-negative polynomial was evaluated (third
panel), and the resulting function was inverted to produce an estimated disease progression curve
(fourth panel).

5. Simulation results

In this section, we perform a variety of simulations to further investigate the properties of our proposed
methodology for constructing the underlying longitudinal trajectory of AD progression. In Section 5.2,
we look at comparing methodology for estimating means and slopes and varying the degree of polynomial
used. In Section 5.3, we investigate the impact of changing the short-term follow up length, number of
consecutive observations per individual and consequently their time between consecutive observations.

5.1. A simple example

Initially, we describe results for a specific scenario over a 5-year collection period, with n = 1000 indi-
viduals, l = 0.5 years between observations resulting in each individual having 11 consecutive time
points. Data from this scenario were generated 1000 times yielding 1000 respective estimated prediction
curves. For comparison purposes, we generated a population average curve using Monte Carlo simula-
tions based on 1,000,000 individual simulated curves and the sampled parameters described in Section 4
and compared each estimated prediction curve to this. The left panel of Figure 3 shows the fitted regres-
sion lines for a subset of individuals from one simulated dataset, the estimated prediction curve based on
this dataset and the population average curve. The accuracy of the four-step approach is evident from the
small differences seen between the population average and estimated prediction curve. The middle panel
of Figure 3 displays the realigned short-term trajectories of the simulated individual’s data where every
individual’s first observation is now their starting point. We also provide 95% CIs based on the boot-
strapping techniques described in Section 3.1, which can be seen in the right panel of Figure 3. Note that
these were constructed based on 100 individuals, as the CIs become very narrow with a larger number of
individuals in our simulations.

5.2. Model comparisons

Using the same distributions for the model parameters as described previously, we compare four different
methods obtained by crossing the method of estimating the means and slopes, by either LMs or LMMs,
with the degree of the non-negative polynomial used, either cubic (3) or quintic (5). For the rest of this
paper, we refer to these methods as LM3, LM5, LMM3 and LMM5.

To examine the difference between the population average and estimated prediction curve, the area
between these curves is calculated over a fine grid using the trapezoidal rule. Figure 4 provides boxplots
for the area between the population average curve and the 1000 estimated predicted curves for the four
methods described previously. We observe more variability in the area between the population average
curve and the estimated predicted curves for the quintic models in comparison with the cubic models,
with the interquartile range spanning a wider range for these quintic combinations. There is also evidence

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017
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Figure 3. Left panel: the results of one simulation following our proposed four-step approach showing individual
short-term data (grey), the estimated predicted curve (blue) and the population average curve (red). Middle panel:
individual short-term data rescaled where every individuals first observation is their starting point. Right panel: the
estimated predicted curve and 95% CI after conducting 1000 bootstraps for each model based on 100 individuals.

AD, Alzheimer’s disease.

Figure 4. Boxplots displaying the range of values for the area between the population average and estimated
prediction curves for the four models. [Colour figure can be viewed at wileyonlinelibrary.com]

of extreme values and a long right tail in the distribution of the areas between the curves with the LM
combinations, which is not apparent in the LMM combinations. These extreme values demonstrate
a tendency for an inaccurate construction of the underlying disease progression curve for the LM
combinations.

Overall, the LMM with a fitted cubic polynomial provides the smallest area between the curves, with
minimal difference evident between the LMs and LMMs within cubics and within quintics.

5.3. Parameter variations

In addition to comparing the different model combinations, variations in parameters are also inves-
tigated. These include varying the time interval between consecutive observations, l, the number of

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017
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individual consecutive observations, m, and consequently the total follow up time, t, which is defined
by the previous two parameters. For each variation, 1000 simulations are conducted. In this section, we
use l = 0.25, 0.5, 0.75,… , 3 years and m = 3, 4, 5,… , 16 consecutive observations. Only combinations
of these parameters that had a maximum follow-up time of 14 years were investigated. These variations
are explored in order to provide advice on the optimal sampling methodology for constructing sigmoidal
progression curves based on our proposed four-step approach.

Figure 5 displays line graphs for the area between the population average and the estimated pre-
dicted curves comparing the four different models, LM3, LM5, LMM3 and LMM5, separately for
0.5, 1, 1.5, 2, 2.5 and 3 years between consecutive observations. In the top left panel, where the time
between consecutive observations is half a year, we observe similar results for the cubic model combi-
nations with smaller areas between the curves compared with the quintic model combinations. When the
time between consecutive observations is increased, the results become less consistent, but generally, the
cubic variations perform better than the quintic models with the latter displaying a great deal of variation
in the area between the curves over time. Arguably, the best overall combination is the cubic LMM.

The heat maps in Figure 6 show an alternative way of comparing the different combinations of the
parameter variations for LM3, LM5, LMM3 and LMM5. Each plot displays the area between the curves
for the number of consecutive observations against the time between consecutive observations. The areas
of darker colour represent the better performing models, with smaller areas between the population
average and the estimated prediction curves.

In general, we can see that the cubic models seem to perform better overall, with increased areas of
darker shading compared with the quintic variations. However, within each of the combinations, we can
see some obvious patterns. In the bottom left corner of each plot, we see an increased discrepancy between
the curves with evidence of lighter shading, representing shorter times between consecutive observations,
and fewer number of observations, subsequently resulting in a shorter follow-up period and consequently

Figure 5. A comparison in the area between the population average curve and estimated prediction curves. Each
plot displays a different time interval between consecutive observations against total follow-up time. Top left
panel uses l = 0.5 and m = 3, 4, 5… , 16, with t between 1 and 7.5 years. Top middle panel uses l = 1 and
m = 3, 4, 5… , 15, with t between 2 and 14 years. Top right panel uses l = 1.5 and m = 3, 4, 5… , 10, with t
between 3 and 13.5 years. Bottom left panel uses l = 2 and m = 3, 4, 5… , 8, with t between 4 and 14 years.
Bottom middle panel uses l = 2.5 and m = 3, 4, 5, 6, with t between 5 and 12.5 years. Bottom right panel uses

l = 3 and m = 3, 4, 5, with t between 6 and 12 years.
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Figure 6. Heat maps of the area between the population average curve and estimated predicted curve when varying
the number of consecutive observations and time between these observations for each model. Darker areas indicate

better performing variations.

poorer outcomes. For the two cubic models, a gradient along the diagonal can be seen such that there is an
initial improvement in the performance for all settings orthogonal to this gradient and later deterioration.
For the quintic models, this behaviour is less pronounced. Specifically, with respect to follow-up time
and the cubic models, it appears that most combinations that lead to a total follow up time of about 3–
6 years appears to perform well. Overall, the combination that provides the smallest area between the
curves was the LMM3 variation, using an interval of 2 years between consecutive observations and three
observations in total, therefore a total follow-up time of 4 years. The combination leading to the most
difference between the population average and estimated prediction curve is using an interval of 2.5 years
and four observations (7.5 years of follow up) for the LM5 combination.

6. Real-world application

To illustrate our methodology, we apply our four-step approach to subjects that were recruited through
ADNI, an ongoing, longitudinal, multi-centre study launched in 2003 to develop clinical, imaging, genetic
and biochemical biomarkers for the early detection and tracking of AD [6]. Data used in the preparation
of this article were obtained from ADNI’s database (adni.loni.usc.edu). ADNI was launched in 2003 as
a public–private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging, PET, other biological markers, and
clinical and neuropsychological assessment can be combined to measure the progression of MCI and
early AD. For up-to-date information, see www.adni-info.org

For the purpose of demonstrating our approach, we used neocortical A𝛽 burden as measured by the
standard uptake value ratio (SUVR) from 18F-florbetapir PET imaging normalised to the whole cere-
bellum. Our proposed method requires longitudinal data and subjects having at least three observations;
thus, individuals with only one or two observations were not considered. The population included 156
ADNI subjects all having three longitudinal measurements. To apply our methodology to ADNI data, an
individual’s first A𝛽 measurement was considered a baseline measurement, and subsequent longitudinal
times were calculated from this.
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Table I. Demographics (mean (SD), n(%)) of the ADNI data for each diagnosis
group.

HC (N = 48) MCI (N = 102) AD (N = 6)

Baseline age (years) 75.1 ± 5.4 70.0 ± 7.8 71.1 ± 9.7
Sex (male) 27 (56%) 55 (54%) 2 (33%)
Baseline neocortical A𝛽 burden 0.78 ± 0.11 0.85 ± 0.12 0.95 ± 0.18
E4 carrier (yes) 9 (19%) 40 (39%) 3 (50%)
Education (years) 16.4 ± 2.8 16.0 ± 2.8 15.3 ± 3.7
Baseline MMSE 29.2 ± 1.3 28.1 ± 1.8 21.2 ± 4.4

ADNI, Alzheimer’s Disease Neuroimaging Initiative; HC, healthy control; MCI, mild
cognitively impaired; AD, Alzheimer’s disease; MMSE, mini-mental state exam.

Figure 7. Individual longitudinal neocortical A𝛽 burden (standard uptake value ratio (SUVR)) by diagnosis group:
left panel displays the healthy controls; middle panel displays the mild cognitively impaired; and right panel dis-
plays individuals with Alzheimer’s disease. The horizontal dotted line at 0.79 represents the cut-off for individuals

classified as amyloid 𝛽 positive. [Colour figure can be viewed at wileyonlinelibrary.com]

We first provide a summary of the ADNI cohort used in this study but note that categorisation of sub-
jects into diagnostic groups (HC, MCI and AD), or use of subject-specific demographics is not necessary
to implement our four-step modelling approach. In our cohort, at the defined baseline, of the 156 sub-
jects, 48 were HC, 102 MCI and 6 were diagnosed as having AD. Demographic details split by diagnosis
group are provided in Table I. At baseline, subjects diagnosed with AD had a significantly higher A𝛽 than
both the MCI and the HC subjects (estimated mean difference 0.101 (95% CI 0.001–0.202) and 0.167
(95% CI 0.064–0.271), respectively). The MCI subjects had a significantly higher A𝛽 than HC subjects
(estimated mean difference 0.066 (95% CI 0.024–0.108)). At the first, follow-up visit after baseline 100
(64%) of subjects showed positive changes in neocortical A𝛽 burden.

Figure 7 displays the trajectories of A𝛽 for all study individuals in our cohort, and Figure 8 displays
the disease progression curve for AD after applying the four-step approach described in Section 3 to
these data. For the latter figure, linear mixed modelling was used to estimate the means and slopes of
all individuals and a cubic polynomial was fitted to these data; see Figure A1 in Appendix A for the
progression curve when linear models were used. Figure 7 also displays in each panel a horizontal dotted
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Figure 8. Application of our approach using linear mixed models to Alzheimer’s Disease Neuroimaging Initia-
tive data with bootstrapped 95% CI including boxplots of neocortical A𝛽 burden (standard uptake value ratio
(SUVR)) for each diagnosis group, separately for amyloid–𝛽 positive and negative individuals. It takes 24.47 years
to progress from an SUVR of 0.79 to 1.01. This is equivalent to a rate of 0.009 increase in SUVR per year.
Similarly, it takes 10.76 years to progress from an SUVR of 0.73 to 0.79. See the text for further details. HC,
healthy control; MCI, mild cognitively impaired; AD, Alzheimer’s disease. [Colour figure can be viewed at

wileyonlinelibrary.com]

line at the commonly used clinical threshold of 0.79, which is based on the estimated 95% quantile for
the distribution of A𝛽 in a group of young HCs for use in longitudinal data [33, 34]. Individuals with an
SUVR above or equal to this value are defined as A𝛽 positive, and below are A𝛽 negative.

In Figure 8, it is of interest to estimate the time it takes to move from HC- (the median SUVR for HCs
that are A𝛽 negative in our cohort) to this clinical threshold and from this threshold to AD+ (the median
SUVR for ADs that are A𝛽 positive in our cohort). The results indicate that it takes 24.47 years (95%
CI 20.17–32.15) to progress from the SUVR clinical threshold of 0.79 to a value of 1.01 (the estimated
median SUVR of the AD+ individuals in our dataset). This is equivalent to a rate of 0.009 increase in
SUVR per year (95% CI 0.007–0.011). Similarly, it takes 10.76 years (95% CI 8.73–14.70) to progress
from 0.73 (the estimated median SUVR of the HC- individuals in our dataset) to the SUVR clinical
threshold of 0.79.

7. Discussion

Alzheimer’s disease is a complex disease, and it is currently rare to have data that encompasses the full
course of the disease, with only short-term follow-up data typically being available. In this paper, we have
demonstrated that it is possible to construct the full underlying longitudinal trajectories using such short-
term data from multiple individuals. We used simulated data generated from a 5PL function, possessing
a shape similar to that hypothesised for AD progression [9], to explore variations in our approach.

Our investigations suggest that the use of cubic polynomials outperforms quintic polynomials when
constructing the full progression curve and the fitting of non-negative polynomials is essential. The use
of a more flexible quintic polynomial could potentially increase the variability observed because of over-
fitting of the data. There were minimal differences between the linear regression models and linear mixed
regression models when constructing the full progression curve, with a marginal preference for LMMs.
Note that in order to fit LMMs, an adequate number of follow-up observations for the individuals are
necessary. Finally, for a hypothesised 30-year progression curve, we demonstrated that the best range of
follow-up times for our methodology is between 3 and 6 years for a fixed number of visits, with follow-up
times outside this range providing less accurate construction of the longitudinal trajectory.

We applied our approach to PET data measuring neocortical A𝛽 burden (SUVR) to ADNI, where
individuals have between 3 and 5 years of follow-up for this specific measure. Our method was able to
quantify the time it takes to progress through the disease course, with results similar to those reported
in Villemagne et al. [8] and Bateman et al. [13]. This quantification could promote understanding of the
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relationship between AD biomarkers and disease progression and is crucial for the introduction of early
therapeutic or intervention strategies to assist in delaying the onset of clinical symptoms and slowing
cognitive decline.

Using bootstrap methodology, we were also able to provide CIs for our predictions. We have described
and implemented the cases bootstrap, which has been advocated in many previous works and is known to
be robust against violations of the distributional assumptions of the random effects. However, we recog-
nise different bootstrap methodologies for longitudinal and mixed effects models, and their effectiveness
is still being studied.

Using our methodology, it is less likely to experience problems associated with missing data, mainly
because we utilise only short-term follow-up data. Individuals’ data are used to estimate the means and
slopes based on data available from the time they entered the study and as such an individual missing
a measurement should not have an undue impact on the ability to provide such estimates. Furthermore,
those individuals who may have a smaller number of measurements due to death could still make a
useful contribution as it is expected these individuals would contribute higher means and lower slopes
and provide information on the upper asymptote of the sigmoidal disease progression curve. As such,
drop out due to death during the duration of the data collection period should have minimal impact on
the ability to construct the disease progression curve. However, whilst shorter follow-ups do reduce the
chance of missing data, there is still the chance of some selection bias. For example, fast progressors may
possibly die earlier, which potentially impacts the estimation of the population curve later in disease. With
the use of measures such as neocortical A𝛽 burden, we suspect this to have little impact, but it should be
considered when investigating other measures, for example, MMSE.

In future work, we expect to explore the effectiveness of our methodology for different markers of AD
such as, MMSE, Clinical Dementia Rating Scale or hippocampal volume and will also be able to provide
separate progression paths for covariates of interest and interactions between these covariates and time,
which will consequently assist in understanding the staging of different events.

The implementation of all methods described in this paper was carried out using R: A Language and
Environment for Statistical Computing [35], and code will be made available upon request.

Appendix A

Figure A1. Application of our approach using linear models to Alzheimer’s Disease Neuroimaging Initiative data
with bootstrapped 95% CI including boxplots of neocortical A𝛽 burden (standard uptake value ratio (SUVR)) for
each diagnosis group, separately for amyloid–𝛽 positive and negative individuals. It takes 18.98 (95% CI 16.55–
22.19) years to progress from an SUVR of 0.79 to 1.01. This is equivalent to a rate of 0.012 (95% CI 0.010–0.0135)
increase in SUVR per year. Similarly, it takes 7.74 (95% CI 6.53–9.58) years to progress from an SUVR of 0.73
to 0.79. HC, healthy control; MCI, mild cognitively impaired; AD, Alzheimer’s disease. [Colour figure can be

viewed at wileyonlinelibrary.com]
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